A traffic enforcement camera (also red light camera, road safety camera, road rule camera, photo radar, photo enforcement, speed camera, Gatso, safety camera, bus lane camera, flash for cash, Safe-T-Cam, depending on use) is a camera which may be mounted beside or over a road or installed in an enforcement vehicle to detect traffic regulation violations, including speeding, vehicles going through a red traffic light, vehicles going through a toll booth without paying, unauthorized use of a bus lane, or for recording vehicles inside a congestion charge area. It may be linked to an automated ticketing system.
The latest automatic number plate recognition systems can be used for the detection of average speeds and raise concerns over loss of privacy and the potential for governments to establish mass surveillance of vehicle movements and therefore by association also the movement of the vehicle's owner. Vehicles owners are often required by law to identify the driver of the vehicle and a case was taken to the European Court of Human Rights which found that human rights were not being breached. Some groups, such as the National Motorists Association in the USA, claim that systems "encourage ... revenue-driven enforcement" rather than the declared objectives.
Maps, Directions, and Place Reviews
Types
Bus lane enforcement
Some bus lane enforcement cameras use a sensor in the road, which triggers a number plate recognition camera which compares the vehicle registration plate with a list of approved vehicles and records images of other vehicles. Other systems use a camera mounted on the bus, for example in London where they monitor Red routes on which stopping is not allowed for any purpose (other than taxis and disabled parking permit holders).
On Monday, February 23, 2009, New York City announced testing camera enforcement of bus lanes on 34th Street in Midtown Manhattan where a New York City taxi illegally using the bus lanes would face a fine of $150 adjudicated by the New York City Taxi and Limousine Commission.
In October 2013, in Melbourne (Australia), Melbourne Airport introduced seven Automatic Number Plate Recognition (ANPR) cameras in their bus forecourt to monitor bus lanes and provide charging points based on vehicle type and the dwell time of each vehicle. Entry and Exit cameras determine the length of stay and provide alerts for unregistered or vehicles of concern via onscreen, email or SMS based alerts. This system was the first of several Sensor Dynamics based ANPR solutions.
Red light enforcement
A red light camera is a traffic camera that takes an image of a vehicle that goes through an intersection where the light is red. The system continuously monitors the traffic signal and the camera is triggered by any vehicle entering the intersection above a preset minimum speed and following a specified time after the signal has turned red.
Red light cameras are also utilitzed in capturing texting-while-driving violators. In many municipalities an officer is monitoring the cameras in a live command center and records all violations, including texting at a red light.
Speed limit enforcement
Speed enforcement cameras are used to monitor compliance with speed limits, which may use Doppler radar, LIDAR or automatic number plate recognition. Other speed enforcement systems are also used which are not camera based.
Fixed or mobile speed camera systems that measure the time taken by a vehicle to travel between two or more fairly distant sites (from several hundred metres to several hundred kilometres apart) are called automatic number plate recognition (ANPR) cameras. These cameras time vehicles over a known fixed distance, and then calculate the vehicle's average speed for the journey.
Stop sign enforcement
In 2007, the Mountains Recreation and Conservation Authority (MRCA), in California, installed the first stop sign cameras in the United States. The five cameras are located in state parks such as Franklin Canyon Park and Temescal Gateway Park. The operator, Redflex Traffic Systems Inc., is paid $20 per ticket. The fine listed on the citation is $100. In 2010, a class action lawsuit was filed against MRCA.
Number plate recognition systems
Automatic number plate recognition can be used for purposes unrelated to enforcement of traffic rules. In principle any agency or person with access to data either from traffic cameras or cameras installed for other purposes can track the movement of vehicles for any purpose.
In Australia's SAFE-T-CAM system, ANPR technology is used to monitor long distance truck drivers to detect avoidance of legally prescribed driver rest periods.
The United Kingdom's police ANPR system logs all the vehicles passing particular points in the national road network, allowing authorities to track the movement of vehicles and individuals across the country.
In the UK an 80-year-old pensioner John Catt and his daughter Linda were stopped by City of London Police while driving in London, UK in 2005. They had their vehicle searched under section 44 of the Terrorism Act 2000 and were threatened with arrest if they refused to answer questions. After they complained formally, it was discovered they were stopped when their car was picked up by roadside ANPR CCTV cameras; it had been flagged in the Police National Computer database when they were seen near EDO MBM demonstrations in Brighton. Critics point out that the Catts had been suspected of no crime, however the police ANPR system led to them being targeted due to their association.
Other
- Congestion charge cameras to detect vehicles inside the chargeable area which have not paid the appropriate fee
- High-occupancy vehicle lane cameras to identify vehicles violating occupancy requirements.
- Level crossing cameras to identifying vehicles crossing railways at grade
- Noise pollution cameras that record evidence of heavy vehicles that break noise regulations by using compression release engine brakes
- Parking cameras which issue citations to vehicles which are illegally parked or which were not moved from a street at posted times.
- Toll-booth cameras to identify vehicles proceeding through a toll booth without paying the toll
- Turn cameras at intersections where specific turns are prohibited on red. This type of camera is mostly used in cities or heavy populated areas.
- Automatic number plate recognition systems can be used for multiple purposes, including identifying untaxed and uninsured vehicles, stolen cars and potentially mass surveillance of motorists .
- Bus lane cameras that detect vehicles that should not be in the bus lane. These may be mounted on buses themselves as well as by the roadside.
Fixed camera systems can be housed in boxes, or mounted on poles beside the road, or attached to gantries over the road, or to overpasses or bridges. Cameras can be concealed, for example in garbage bins.
Mobile speed cameras may be hand-held, tripod mounted, or vehicle-mounted. In vehicle-mounted systems, detection equipment and cameras can be mounted to the vehicle itself, or simply tripod mounted inside the vehicle and deployed out a window or door. If the camera is fixed to the vehicle, the enforcement vehicle does not necessarily have to be stationary, and can be moved either with or against the flow of traffic. In the latter case, depending on the direction of travel, the target vehicle's relative speed is either added or subtracted from the enforcement vehicle's own speed to obtain its actual speed. The speedometer of the camera vehicle needs to be accurately calibrated.
Some number plate recognition systems can also be used from vehicles.
Controversy
Legal issues
Various legal issues arise from such cameras and the laws involved in how cameras can be placed and what evidence is necessary to prosecute a driver varies considerably in different legal systems.
One issue is the potential conflict of interest when private contractors are paid a commission based on the number of tickets they are able to issue. Pictures from the San Diego red light camera systems were ruled inadmissible as court evidence in September 2001. The judge said that the "total lack of oversight" and "method of compensation" made evidence from the cameras "so untrustworthy and unreliable that it should not be admitted".
Some U.S. states and provinces of Canada, such as Alberta, operate "owner liability", where it is the registered owner of the vehicle who must pay all such fines, regardless who was driving the vehicle at the time of the offense, although they do release the owner from liability if he or she identifies the actual driver and that person pays the fine.
In a few U.S. states (including California), the cameras are set up to get a "face photo" of the driver. This has been done because in those states red light camera tickets are criminal violations, and criminal charges must always name the actual violator. In California, that need to identify the actual violator has led to the creation of a unique investigatory tool, the fake "ticket". In Arizona and Virginia, tickets issued by cameras are unenforceable due to there being no penalty for ignoring them. However, acknowledging receipt of such ticket makes it valid and thus enforceable. Many states have outlawed the use of traffic enforcement cameras.
In April 2000, two motorists who were caught speeding in the United Kingdom challenged the Road Traffic Act 1988, which required the keeper of a car to identify the driver at a particular time as being in contradiction to the Human Rights Act 1998 on the grounds that it amounted to a 'compulsory confession', also that since the camera partnerships included the police, local authorities, Magistrates Courts Service (MCS) and Crown Prosecution Service (CPS) which had a financial interest in the fine revenue that they would not get a fair trial. Their plea was initially granted by a judge then overturned but was then heard by the European Court of Human Rights (ECtHR), and the European Court of Justice (ECJ). In 2007 the European Court of Human Rights found there was no breach of article 6 in requiring the keepers of cars caught speeding on camera to provide the name of the driver.
Accuracy
In December, 2012, Speed Camera Contractor Xerox Corporation admitted that cameras they had deployed in Baltimore city were producing erroneous speed readings, and that 1 out of every 20 citations issued at some locations were due to errors. The erroneous citations included at least one issued to a completely stationary car, a fact revealed by a recorded video of the alleged violation.
In the city of Fort Dodge, Iowa, speed camera contractor Redspeed discovered a location where drivers of school buses, big panel trucks and similar vehicles have been clocked speeding by the city's mobile speed camera and radar unit even though they were obeying the 25 mph speed limit. The errors were due to what was described as an "electromagnetic anomaly".
Where verification photos are recorded on a time sequence, allowing the calculation of actual speed, these have been used to challenge the accuracy of speed cameras in court. Motorists in Prince George's County, Maryland, have successfully challenged tickets from Optotraffic speed cameras where they were incorrectly ticketed at over 15 mph over the limit. However, Prince George County no longer allows time-distance calculations as a defense in cases where "the equipment was calibrated and validated, or is self calibrating". The National Highway Traffic Safety Administration standards for "across the road radar" state that "If the ATR device is to be considered for unattended operation, the manufacturer shall provide a secondary method for verifying that the evidential recorded image properly identifies the target vehicle and reflects this vehicle's true speed, as described in §5.18.2. This may be accomplished by means of a second, appropriately delayed image showing the target vehicle crossing a specified reference line."
Surveillance
- Police and government have been accused of "Big Brother tactics" in over-monitoring of public roads, and of "revenue raising" in applying cameras in deceptive ways to increase government revenue rather than improve road safety.
Revenue, not safety
- In 2010, a campaign was set up against a speed camera on a dual carriageway in Poole, Dorset in a 30 mph area in the United Kingdom, which had generated £1.3m of fines every year since 1999. The initial Freedom of information request was refused and the information was only released after an appeal to the Information Commissioner.
- In May, 2010, the new Coalition government said that the 'Labour's 13-year war on the motorist is over' and that the new government 'pledged to scrap public funding for speed cameras' In July Mike Penning, the Road safety minister reduced the Road Safety Grant for the current year to Local Authorities from £95 million to £57 million, saying that local authorities had relied too heavily on safety cameras for far too long and that he was pleased that some councils were now focusing on other road safety measures. It is estimated that as a result the Treasury is now distributing £40 million less in Road Safety Grant than is raised from fines in the year. Dorset and Essex announced plans to review camera provision with a view to possibly ending the scheme in their counties, however Dorset strongly affirmed its support for the scheme, albeit reducing financial contributions in line with the reduction in government grant. Seven counties also announced plans to turn off some or all of their cameras, amidst warnings from the country's most senior traffic policeman that this would result in an increase in deaths and injuries. Gloucestershire cancelled plans to update cameras and has reduced or cancelled maintenance contracts.
- In August 2010, the Oxfordshire, UK speed cameras had been switched off because of lack of finance due to government funding policy changes. The cameras were switched back on in April 2011 after a new source of funding was found for them. Following rule changes on the threshold for offering "Speed Awareness Courses" as an alternative to a fine and licence points for drivers, and given that the compulsory fees charged for such courses go directly to the partnerships rather than directly to central government as is the case for fine revenues, the partnership will be able to fund its operations from course fees. Compared with the same period in the previous year with the cameras still switched on, the number of serious injuries that occurred during the same period with the cameras switched off was exactly the same - at 13 - and the number of slight injuries was 15 more at 70, resulting from 62 crashes - 2 more than when the cameras were still operating. There were no fatalities during either period.
Unpopularity
Claims of popular support are disputed by elections in the US, where the camera companies often sue to keep it off the ballot, and camera enforcement often loses by a wide margin. Automated enforcement is opposed by some motorists and motoring organizations as strictly for revenue generating. They have also been rejected in some places by referendum.
- The first speed camera systems in the USA was in Friendswood, Texas in 1986 and La Marque, Texas in 1987. Neither program lasted more than a few months before public pressure forced them to be dropped.
- In 1991, cameras were rejected in referendum in Peoria, Arizona; voters were the first to reject cameras by a 2-1 margin.
- In 1992, cameras were rejected by voters in referenda in Batavia, Illinois.
- Anchorage, Alaska rejected cameras in a 1997 referendum.
- In 2002, the state of Hawaii experimented with speed limit enforcement vans but they were withdrawn months later due to public outcry.
- A 2002 Australian survey found that "The community generally believes that enforcement intensities should either stay the same or increase", with 40% of those surveyed saying that they thought that the number of speed cameras on the road should be increased, 43% saying that they thought the number should stay the same, and 13% saying that they thought that the number should be decreased.
- In 2005, the Virginia legislature declined to reauthorize its red light camera enforcement law after a study questioned their effectiveness, only to reverse itself in 2007 and allow cameras to return to any city with a population greater than 10,000.
- Steubenville, Ohio rejected cameras in a 2006 referendum.
- A 2007 literature review of the benefits and barriers to implementation of automated speed enforcement in the U.S. stated that "In general, the results of [public opinion] surveys indicate that a majority of respondents support automated enforcement. However, the margins of support vary widely, from a low of 51 percent in Washington, D.C. to a high of 77 percent in Scottsdale, Arizona."
- In 2009, a petition was started in the town of College Station, Texas which requested that all red light cameras be dismantled and removed from all of the town's intersections. Enough signatures were captured to put the measure on the November 2009 general election ballot. After an extensive battle between the College Station city council and the opposing sides, both for and against red light cameras, the voters voted to eliminate the red light cameras throughout the entire city. By the end of November the red light cameras were taken down.
- On May 4, 2010, an ordinance authorizing the use of speed cameras in the town of Sykesville, Maryland was put to a referendum, in which 321 out of 529 voters (60.4%) voted against the cameras. The turnout for this vote was greater than the number of voters in the previous local Sykesville election for mayor where 523 voted.
- Arizona decided not to renew their contract with Redflex in 2011 following a study of their statewide 76 photo enforcement cameras. Reasons given included less than expected revenue due to improved compliance, mixed public acceptance and mixed accident data.
Effectiveness
- Aside from the issues of legality in some countries and states and of sometime opposition the effectiveness of speed cameras is very well documented. The introduction to The Effectiveness of Speed Cameras A review of evidence by Richard Allsop includes the following in the foreword by Professor Stephen Glaister, Director of the RAC (Royal Automobile Club). "While this report fully lays out the background to the introduction of speed cameras and the need for speed limits, its job is not to justify why the national limits are what they are; a review of speed limits to see whether they are soundly based is for another day. What it has done is to show that at camera sites, speeds have been reduced, and that as a result, collisions resulting in injuries have fallen. The government has said that a decision on whether speed cameras should be funded must be taken at a local level. With the current pressure on public funds, there will be - indeed there already are - those who say that what little money there is can be better spent. This report begs to differ. The devices are already there; they demonstrate value for money, yet are not significant revenue raisers for the Treasury; they are shown to save lives; and despite the headlines, most people accept the need for them. Speed cameras should never be the only weapon in the road safety armoury, but neither should they be absent from the battle."
- The town of Swindon abandoned the use of fixed cameras in 2009, questioning their cost effectiveness with the cameras being replaced by vehicle activated warning signs and enforcement by police using mobile speed cameras: in the nine months following the switch-off there was a small reduction in accident rates which had changed slightly in similar periods before and after the switch off (Before: 1 fatal, 1 serious and 13 slight accidents. Afterwards: no fatalities, 2 serious and 12 slight accidents). The journalist George Monbiot claimed that the results were not statistically significant highlighting earlier findings across the whole of Wiltshire that there had been a 33% reduction in the number of people killed and seriously injured generally and a 68% reduction at camera sites during the previous 3 years.
- The 2010 Cochrane Review of speed cameras for the prevention of road traffic injuries and deaths reported that all 28 studies accepted by the authors found the effect of speed cameras to be a reduction in all crashes, injury crashes, and death or severe injury crashes. "Twenty eight studies measured the effect on crashes. All 28 studies found a lower number of crashes in the speed camera areas after implementation of the program. In the vicinity of camera sites, the reductions ranged from 8% to 49% for all crashes, with reductions for most studies in the 14% to 25% range. For injury crashes the decrease ranged between 8% to 50% and for crashes resulting in fatalities or serious injuries the reductions were in the range of 11% to 44%. Effects over wider areas showed reductions for all crashes ranging from 9% to 35%, with most studies reporting reductions in the 11% to 27% range. For crashes resulting in death or serious injury reductions ranged from 17% to 58%, with most studies reporting this result in the 30% to 40% reduction range. The studies of longer duration showed that these positive trends were either maintained or improved with time."
- In January 2011 Edmonton, Alberta cancelled all 100,000 "Speed On Green" tickets issued in the previous 14 months due to concerns about camera reliability.
- According to the 2003 NCHRP Synthesis 310, "RLR automated enforcement can be an effective safety countermeasure....[I]t appears from the findings of several studies that, in general, RLR cameras can bring about a reduction in the more severe angle crashes with, at worst, a slight increase in less severe rear-end crashes. However it noted that "there is not enough empirical evidence based on proper experimental design procedures to state this conclusively."
- The 2010 report, "The Effectiveness of Speed Cameras A review of evidence", by Richard Allsop concludes "The findings of this review for the RAC Foundation, though reached independently, are essentially consistent with the Cochrane Review conclusions. They are also broadly consistent with the findings of a meta-analysis reported in the respected Handbook of Road Safety Measures, of 16 studies, not including the four-year evaluation report, of the effects of fixed cameras on numbers of collisions and casualties."
- A recent study conducted in Alabama reveals that RLCs seem to have a slight impact on the clearance lost time; the intersections equipped with RLCs are half a second less in use compared with those without cameras; and highway capacity manual estimates a shorter lost time and thus may overestimate the intersection's capacity.
- In the UK the town of Swindon abandoned the use of fixed speed cameras, arguing that the cost did not represent an effective way to reduce road accidents. Within four years the town was the safest town to drive in the UK, based on accident rates per 1,000 registered vehicles: a result linked by the Local Authority Member for Council Transformation, Transport and Strategic Planning to the removal of speed cameras and resultant additional funding for road safety, alongside close working with the police.
Critical response
Online websites, like Photo Radar Scam and BantheCams.org, have been created in reaction to the rising use of traffic cameras. Their primary goal, as stated by BantheCams.org, is to "educate and equip local citizens with a way to combat the abuse of power now being exercised by local and state governments with the regards to the use of electronic surveillance devices."
Groups like NHTSA (National Highway Traffic Safety Administration) have encouraged the usage of automated speed enforcement to help improve general road safety and to decrease crash rates.
Avoidance/evasion
To avoid detection or prosecution, drivers may:
- Drive at or below the legal speed.
- Brake just before a camera in order to travel past its sensor below the speed limit. This is, however, a cause of collisions. Or brake suddenly, which results in rear-end crashes.
- Use GPS navigation devices, such as Waze, which contain databases of known camera locations to alert them in advance. These databases may, in some cases, be updated in near-realtime. The use of GPS devices to locate speed cameras is illegal in some jurisdictions, such as France. In Australia, the use of GPS devices within the category of intelligent speed adaptation are being encouraged.
- Although ineffective, passive laser detectors or radar detectors that detect when the vehicle's speed is being monitored exist. Use of these devices may be illegal in some jurisdictions such as France.
- Install active laser jammer or radar jammer devices which actively transmit signals that interfere with the measuring device. These devices are illegal in many jurisdictions.
- Remove, falsify, obscure or modify vehicle license plate. Tampering with number plates or misrepresenting them is illegal in most jurisdictions.
- Vandalize the camera.
In August, 2010, a fast driving Swedish driver reportedly avoided several older model speed cameras, but was detected by a new model, as traveling at 300 km/h (186 mph), resulting in the world's largest speeding fine to date. In the past, it was possible to avoid detection by changing lanes when SPECS average speed cameras were in use as they measured a vehicle's speed over distance in one lane only. Since 2007, measures were taken to mitigate this limitation. Although the cameras do operate in pairs on single lanes (it is a limitation of the technology not a restriction in the type approval) the authorities now install the cameras such that the monitored length of road overlaps between multiple camera pairs. The driver cannot tell which cameras are 'entry' and which are 'exit' making it difficult to know when to change lane.
History
The concept of the speed camera can be dated back to at least 1905; Popular Mechanics reports on a patent for a "Time Recording Camera for Trapping Motorists" that enabled the operator to take time-stamped images of a vehicle moving across the start and endpoints of a measured section of road. The timestamps enabled the speed to be calculated, and the photo enabled identification of the driver.
The Dutch company Gatsometer BV, which was founded in 1958 by rally driver Maurice Gatsonides, produced the 'Gatsometer'. Gatsonides wished to better monitor his average speed on a race track and invented the device in order to improve his lap times. The company later started supplying these devices as police speed enforcement tools. The first systems introduced in the late 1960s used film cameras to take their pictures. Gatsometer introduced the first red light camera in 1965, the first radar for use with road traffic in 1971 and the first mobile speed traffic camera in 1982;
From the late 1990s, digital cameras began to be introduced. Digital cameras can be fitted with a network connection to transfer images to a central processing location automatically, so they have advantages over film cameras in speed of issuing fines, maintenance and operational monitoring. However, film-based systems may provide superior image quality in the variety of lighting conditions encountered on roads, and are required by courts in some jurisdictions. New film-based systems are still being sold, but digital pictures are providing greater versatility and lower maintenance and are now more popular with law enforcement agencies.
Source of the article : Wikipedia
EmoticonEmoticon